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The EU Roadmap towards 2050

EU Commission, Energy Roadmap 2050 :

Reduction of GHG emissions (primarily CO,) 80% below
1990 levels within 2050

e Transition to a “low carbon economy”

e Actions required in all fields > N'eed of more renewables (RES): PV, wind,
100% 100% biomass...
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«Current policy» = in line with EU energy strategy 2020
Main emitters (2015):

» Power 25%
» Transport 20%
Italy’s role: 10% of EU GHG emissions (EU-27)

Electric vehicles in Europe
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Issues and the role of energy storage

In presence of large (in the prespective 2030-2050, very large!) non
programmable RES (wind, FV) there are increasing issues of control
and stability of the electric grid:

* Load balancing
e Dispatch scheduling

e Energy losses and curtailment (grid congestions): the amount of
energy which is lost increases with the installed non programmable

RES.

» One of the key solutions (with power
generation flexibility and demand-side
management) is energy storage
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The electric grid, the natural gas grid and the fuel-to-mobility
infrastructure as they are today
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= The three ‘energy infrastructures’ nowadays see easy-structured interactions
= Energy storage through pumped-hydro and seasonal NG storage
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Energy storage and Power-to-gas (P2G)

High energy
storage

~ allow long
discharge time

» pumped hydro
» P2G, production of H, and synthetic
natural gas (SNG)

» flywheels, supercapacitors
> batteries (Ni-MH, Li-ion, redox..)
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Large energy storage capacities are required, both on a daily and
seasonal scale
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Large energy storage capacities are required, both on a daily and
seasonal scale
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» The annual RES production profile
(especially FV) has strong seasonal
oscillations stagionali

1 T 274 PV Italy

(GSE, 2017)

» Chemical energy storage tends to be the
most competitive option for large energy
capacities (TWh scale — perspective tens
of TWh...)
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Power-to-gas with hydrogen production

The Power-to-gas concept aims at producing H, from renewables, using excess or
dedicated electricity from PV, wind or other non programmable RES

H2 is generated through electrolysis: H,0 (1) + EE - H, (g) +%02 (g) in alkaline or PEM
cells (the latter showing higher compactness and wide dynamic capabilities)

Alkaline electrolysis PEM electrolysis
40 - 90 °C 20 -100°C

Cathode - + Anode
Hy Y 0y
H,0 8 @'
Cathode Anode
NilC NiCoiFe

Diaphragm
20H 2> %0;+H,0+2e Anode H,0 > 2H +% 0,4+ 2e Anode
2H,0+2e: > H,+20H Cathode 2H +2e > H, Cathode
HO 2 H;+%0, Total reaction HO = H;+%0, Total reaction

PEM electrolysis stack , 2 MW (ITM Power, WHEC 2016)

» Electricity—to-fuel efficiency (rif. LHV): 65-75%
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Mid-to-long-term evolution: integration of power, transport and NG
networks with power-to-gas and electricity storage
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* Electric-to-electric storage = existing pumped hydro + newly installed batteries + plug-in EVs + others...
* P2G to link networks = role of hydrogen as clean energy vector
* Natural gas grid with blends of NG, biomethane, H,
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RES and mobility scenarios @ 2030-2050

Mobility: 2050 IEA scenario * . . . .
High alternative automobiles penetration forecast > Th rOUgh mu ltl_n Od d l grld simu |at|on mOdeIS for

75 countries or regions we can estimate the availability of

100%
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» Nearly 735 kt H2/year (81% of
demand) can be covered by
RES, with 26.2 GW P2G
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Electricity: 2050 RES technical potential scenario**
Maximum feasible PV & wind capacity (5-6 times vs current)
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SEN2017
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I Geothermal EEEHydro I Wind PV —e-Load From: P. Colbertaldo, G. Guandalini, S. Campanari “Modelling the integrated power and
* IEA, H2&FC Technology Roadmap, 2015 (% for EU4 — UK+D+F+ITA, scaled to ITA), ** P. R. transport energy system: The role of power-to-gas and hydrogen in long-term scenarios
Defaix et al., Technical potential for photovoltaics on buildings in the EU-27,2012 for Italy", Energy, Vol. 154[ p. 592‘601, dOIorg/lo1016/jenergy201804089, 2018

RE-Shaping Project, Long Term Potentials and Costs of RES, 2011
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Chemical energy storage with Power-to-gas and H, uses

v' Hydrogen may work as «energy hub» for uses in industry (green chemistry,
production of NH; / methanol), mobility, greening of natural gas, support to the
electric grid (power-to-power or P2P), CHP

Wind farm

1
H,0 (1) + EE - H, (g) +§02 9)

Electrolysis system (PEM, alkaline, SO..)

o Energy market and
: Grid management

™

(ref. LHV): 65-75%

1 Hydrogen storage «H2 Hub» Mobility
T M . Green chemistry
. opi -d ) @ == Injection in NG grid
g Tanks / und y Methanation and SNG
anks / undegroun A EU Grasshopper
storage ~Power to-power oroject &,
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Examples: 1) Injection in the NG grid

s s » Large blending capacity: achieving a 10-20% H,
_ rarmo (vol.) average requires nearly all today’s
TR | electricity from PV and wind
:. g NG EE to P2G  Total production
transported @ 10%,, H, from PV + wind
(x10° Nm3/y)t  (TWhg/y)? (TWh/y)?
Germany 81 40.5 115
-ty s ms  as
D oy pons UK 77 38.5 61.5
Py — USA 779 389.5 307

STOGIT
Q) Storage fields

1 data from BP Statistical Review of World Energy 2016
2 with 60% efficiency (HZ,LHV/EeI)
3 from AWEA, energytransition.org, BP statistical review, US Energy Information

MAZARA e Administration, www.gov.uk/government/statistics, Italy’s GSE.
DELVALLD A o

ITALGAS

®  Municipalities under control

» Let’s not forget that «city gas», used in

SNAM RETE GAS (2017) Italy up to the ‘70-80 was ~50%
Transportation: 76 billions of Nm3 hvd
Storage: 16 billions of Nm3 yarogen...
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Techological limits to grid injection

» H2+NG mixing has been studied in several specific projects (e.g. NaturalHy , EU FP6)
through risk evaluations and experimental testing of pipelines and domestic appliances,
showing good compatibility up to e.g. 20-30% H, (vol.)

» Adaptation issues for industrial uses (e.g. exisiting engine and gas turbine fleets) where -
in absence of actions- the max tolerable quantity is limited to few % (3-5%)
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Fig. 3. Maximum allowed hydrogen volumetric fraction (%) in order to fulfill TSO 0 6 12 1B 4 30 3% 42 & *
requirements (dotted lines; values referred to Italy limits) as function of natural gas Time [h]
properties (HHV and WI); some NG types commonly present in the European grid Da: G. Guand_alin_i, P. Col_bertaldo, S. Campanari “Dynamic moc_ie_ling_ of qatural gas quality within
are located as reference. transport  pipelines in  presence of hydrogen injections”, Applied Energy,

10.1016/j.apenergy.2016.03.006 , 2017.
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2) The alternative of methanation with re-use of CO,

C02+4H2 —> CH4 + 2HZO AHO 298K — -206.28 kJ/mOI
CO+3H, >CH,+H,0 AH®qg¢ = -41.16 kJ/mol

» The Sabatier process allows methantion through CO2 and CO hydrogenation (Sabatier &

Senderens, 1902)

» Exothermal reactions working at low temperature and high pressure (e.g. 300+400°C, 40+60
bar).

» Process efficiency ~80 % (LHV/LHV,); generated heat can be recovered for high pressure
steam production.

» The process aims at producing a synthetic natural gas (SNG) which respects grid code
specifications and allows injection in the distribution grid.

Hy - CO,

Feed 5+ co,”

/Jg /Jg /JQ Es. layout of Topsoe TREMP™ processs; other process
include HICOM (British Gas), Lurgi, CONOCO, Linde.

HP

F le boiler
o HP

as cooler
e ~ boiler
F/E exchanger

Recycle
Compressor
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CO, may come from biomass , e.g. from biogas upgrading

water elektrolysis carbon dioxide
(CO,)

renewable energies

7 upgrading

? ! ! Biogas (CH, + 30-45% CO,)

biogas plant

biogas methane

Aatiir=al = e
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3) Direct use of H, for mobility

Example of recent proposals for passenger cars

j |_ Toyota Mirai
{ydrogen
' l o e Fuelcell @ 114 kW (153 CV)
ga ° Two hydrogen tanks, 5kg H, @ 700 bar (tank weight 87.5 kg),
driving range 500 km

e With batteries for braking energy recovery
e Can generate electricity to feed the grid in case of black-out

Leasing 36 months
@ 499 S/month
Or purchase 57 kS
(Japan / USA)

Hyundai Nexo
e Fuel cell @ 120 kW (163 CV)
e Three H2 tanks, 6.3 kg H, @ 700 bar, driving range 800 km

- v

—
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P2G in the world

Annual Installed P2G Capacity and Cumulative Hydrogen Production by Region,
World Markets: 2017-2026

2,000 500,000
m North America

- ~ Europe g
§ mmm Asia Pacific 400,000 =
= 1599 T e Latin America, Middle East & Africa - ]
E ~——Cumulative Hydrogen Production - Interactive map:
- § WWww.europeanpowertogas.com
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100,000 5
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(Source: Navigant Research)

» Nearly 20 plants operating in 2015, 80 expected S Resmounio
within 2018 (Germany, USA, Canada, Spain, UK,
China,Japan, France).

» Some P2G plants are injecting H2 in the NG grid, e.g.
Falkenhagen (2013), Werlte (2013, methanation),
other feed refuelling stations or P2P systems.

Polonia
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One the first P2G plants

Falkenhagen Power-to-Gas Plant (Germany, Uniper)

Location: Falkenhagen, Brandenburg.

Initiated Oct. 2013, first grid injection 2014

PEM electrolysis (2 MW,

Production: ~ 360 m%h H,, injection in local distribution grid through a 1.6 km H, pipeline

S. Campanari, November 2018
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Conclusions

v" Electricity, NG and mobility energy networks will interweave significantly in future, with a
central role for energy storage technologies
» lIssues have to be solved before a 100% RES electric system could be physically
implemented, a parallel use of traditional (e.g. fossil fuel based) technologies is deemed
necessary also in a medium-long term perspective.
» Hydrogen technologies and P2G would strongly help in facing the challenge.

v' P2G —H2 allows to recover over-demand RES power generation

v Mobility using FCEV + BEV scenarios has advantages vs. BEV-only or FCEV-only

v’ ltaly: even at very high RES scenarios, best results still show ~50% primary consumption
from fossils, far from goals = call for additional actions (more/other RES? CCS? Nuclear? )

= Role of different storage technologies (H2, NH3/methanol, innovative
Ongoing batteries, CAES...) and grid interconnections improvement
development . : . : : :
= Economic analysis of infrastructure costs in the different scenarios

= Economic optimization of P2G + wind farm operation in selected case studies

= Extension of the analysis to heavy-load transport

. {iZ7) POLITECNICO
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