

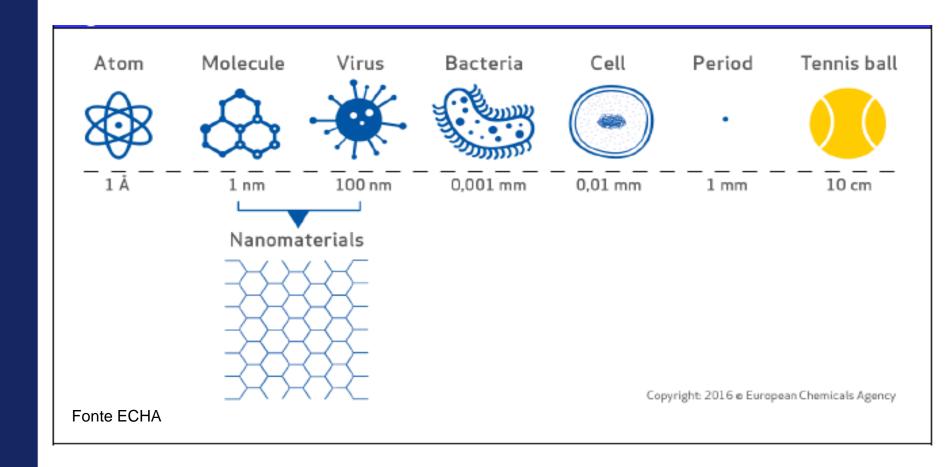
Indicazioni per la scelta dei DPI nell'impiego dei nanomateriali: la linea guida di Federchimica

13^a Conferenza dei Responsabili di Stabilimento e dei Responsabili HSE

Virginio Sarto (BASF Italia S.p.A.)
Gruppo di Lavoro Nanomateriali e Sicurezza, Federchimica

Comitato R&S, I e Gruppi di lavoro

Il Comitato Ricerca, Sviluppo e Innovazione è l'Organo Istituzionale di Federchimica che si occupa di tematiche connesse alla R&S nelle imprese chimiche. Attualmente in alcune aree specifiche riceve il supporto di altri 3 Gruppi di Lavoro:

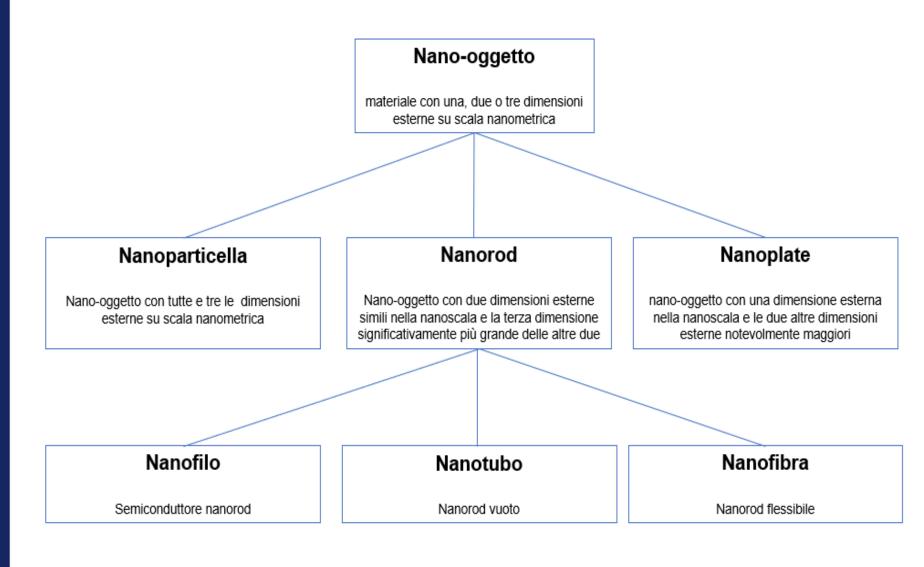

- Open Innovation, sostenibilità e trasferimento tecnologico
- > Nanomateriali e sicurezza
- Finanziamenti europei e nazionali (Programmi «Horizon 2020» e «Horizon Europe» della CE)

Il Gruppo di lavoro "Nanomateriali e Sicurezza"

Attività principali:

- > Monitorare lo sviluppo della legislazione specifica
- Valutare gli aspetti legati alla Sicurezza e Salute sui Luoghi di Lavoro, in considerazione delle caratteristiche di tali materiali
- ➤ Valutare l'impatto ambientale
- > Raccogliere metodiche per la loro caratterizzazione

Range dimensionale dei nanomateriali (*)


(*) Raccomandazione 2011/696/UE

Nanoparticelle - Nanomateriali

Le nanoparticelle ("particelle ultrafini") esistono in natura e possono essere prodotte intenzionalmente o meno in differenti processi, in piccola scala per attività di ricerca, in scala preparativa o industrialmente, anche in grande quantità e in differenti forme.

- ➤ Le proprietà dei nanomateriali differiscono notevolmente in funzione della loro forma, composizione e caratteristiche chimico-fisiche
- Possono presentare proprietà diverse rispetto all'equivalente materiale chimicamente identico, ma con particelle in forma macro
- ➤ E' necessario adottare un approccio caso per caso per definire quali misure possano essere appropriate per la gestione di tali prodotti

Possibili forme dei nanomateriali

Fonte: "Workplace Exposure to Nanoparticle" - European Agency for Safety and Health at Work (2009)

Salute e sicurezza sui luoghi di lavoro

In considerazione delle caratteristiche dei nanomateriali e della non diffusa conoscenza da parte degli utilizzatori, il GdL ha deciso di predisporre una linea guida che potesse aiutare i DdL, RSPP e gli utilizzatori in generale, nella scelta del dispositivo di protezione più adatto durante il loro impiego.

D.Lgs. 81/08: il datore di lavoro deve **valutare tutti i rischi** per la sicurezza e la salute dei lavoratori, compresi quindi anche quelli che non sono direttamente disciplinati da specifici titoli del Decreto. Tra i rischi non direttamente normati rientra quello legato alla presenza di nanomateriali.

Documento preparato dal GdL

Collana Editoriale del Comitato Ricerca, Sviluppo e Innovazione

Linea Guida N. 5

Indicazioni per la scelta dei Dispositivi di Protezione Individuale nell'impiego dei nanomateriali

Febbraio 2020

Obiettivi del documento

- ➤ Fornire indicazioni per un utilizzo in sicurezza di nanomateriali intenzionalmente prodotti e per il controllo dell'esposizione
- ➢ Illustrare i Dispositivi di Protezione Individuale (DPI), il loro adeguato utilizzo per la protezione degli operatori nell'impiego abituale, occasionale o in emergenza quando la Valutazione del Rischio Chimico stabilisce che non è possibile ridurli con misure tecniche di prevenzione, da mezzi di protezione collettiva, da misure, metodi o procedimenti di riorganizzazione del Lavoro (art. 75 del D.Lgs. 81/08)
- Fornire indicazioni sulla ricerca dei Valori Limiti di Esposizione Professionale

Temi trattati nel documento del GdL

FORMA: quali caratteristiche presenta il materiale in uso? Quale forma fisica? Si tratta di una miscela? E' stato valutato il rischio di esposizione?

ATTIVITA' LAVORATIVA: quali modalità operative vengono attuate?

Potrebbero causare esposizione? E' possibile modificare l'operatività per ridurre l'esposizione? Viene considerata l'attività in condizioni normali, in emergenza, nelle manutenzioni?

<u>CONTROLLI TECNICI</u>: in considerazione delle caratteristiche del nanomateriale in uso, quali controlli tecnici saranno efficaci? La progettazione è adeguata per minimizzare i rischi?

<u>CONTROLLI GESTIONALI</u>: sono state predisposte regole interne per l'impiego? E' stato regolamentato il rischio dell'attività manutentiva? E in caso di un intervento in emergenza (es. perdita o guasto)?

<u>DPI</u>: se l'adozione di misure tecniche collettive, misure, metodi o procedimenti di organizzazione del lavoro non permettono un efficace controllo del rischio, quali DPI possono essere utilizzati per intervenire sul rischio residuo?

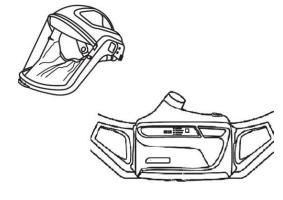
Vie principali di esposizione

- Inalazione: più probabile per le particelle aerodisperse che penetrano all'interno dell'organismo principalmente attraverso il naso e, secondariamente, la bocca.
- Contatto dermico: dovuto alla mancata protezione delle mani o per esposizione di parte della cute (es. braccia, collo, etc.)
- Ingestione: principalmente imputabile ad una cattiva igiene, come ad esempio mangiare con mani non precedentemente lavate. Può anche essere un effetto secondario dell'inalazione di materiale aerodisperso attraverso il cavo orale

Attività con possibile esposizione a NM

- Ricevimento di materiali e campionamenti;
- Attività produttive (miscelazione, formulazione, applicazione);
- Confezionamento;
- Laboratorio (sintesi, controlli analitici, caratterizzazione);
- Pulizie in aree nelle quali si utilizzano o producono nanomateriali;
- Attività manutentive;
- Depositi e preparazione spedizioni;
- Situazioni di emergenza (produzione, laboratorio, logistica, etc...) dovute a spandimenti per rottura di impianti, contenitori o sversamento accidentale durante l'impiego;
- Gestione di scarti e rifiuti.

Misure a seguito della valutazione del rischio


- > segregazione dell'area di impiego;
- ➢ organizzazione dei processi lavorativi riducendo al minimo la durata e l'intensità dell'esposizione;
- definizione di appropriate misure di igiene (operative, pulizia ambienti), precauzioni nell'impiego dell'abbigliamento di protezione; misure di igiene personale);
- riduzione al minimo indispensabile della presenza di nanomateriali nell'ambiente lavorativo;
- ➤ Ottimizzazione delle modalità operative;
- > attività formative e informative;
- > gestione delle emergenze

Protezione delle vie respiratorie (APVR)

Da utilizzare solo quando non sono applicabili misure organizzative e tecniche o quando tali misure sono insufficienti per proteggere gli operatori dal rischio residuo.

Sostanza pericolosa	Protezione
Particelle, gas e vapori	Filtro combinato e maschera
Polvere e fumo	Filtro antipolvere
Gas e vapori	Filtro antipolvere e maschera
Carenza di O ₂ e/o concentrazione eccessiva di sostanze pericolose	Respiratore autonomo

UNI11719:2018 "Guida alla scelta, all'uso e alla manutenzione degli apparecchi di protezione delle vie respiratorie", in applicazione alla UNI EN 529:2006

Protezione delle mani

I guanti devono essere impermeabili; i materiali più adatti sono considerati il nitrile e il neoprene.

Il materiale deve essere compatibile chimicamente con il nanomateriale da manipolare, in quanto è possibile la migrazione del nanoprodotto nel materiale del guanto

Norme di riferimento: EN374 (Guanti di protezione contro prodotti chimici e microrganismi) e EN 420 (Requisiti generali e metodi di prova)

Abbigliamento

- Gli indumenti protettivi più efficienti per proteggere dalle nanoparticelle sono realizzati in tessuto non tessuto.
- La protezione consigliata è un indumento Tipo 4-5-6 o Tipo 3 per le situazioni più critiche
- Per le attività produttive o manutentive, molto usate sono le tute monouso in polietilene o camici di laboratorio non di cotone
- Da evitare la possibile esposizione cutanea tra indumento di protezione e guanto

Norme di riferimento: EN14605, EN13034 e EN13982-1

Protezione degli occhi

- Occhiali di sicurezza a protezione completa ("goggles") certificati per la protezione da gas e liquidi, classificati come campo di impiego 5 (Gas e particelle di polvere fini, Gas, vapori, spruzzi, fumo e polvere con particelle di dimensioni $< 5 \ \mu m$)
- Maschera a pieno facciale
- Cappucci o elmetti ventilati, integrando quindi la protezione respiratoria.

Norma di riferimento: EN166

Indicazioni finali sulla Linea Guida

- Può essere di supporto nell'attenzione preventiva e nella scelta di un'adeguata misura protettiva
- Può aiutare nel considerare aspetti aggiuntivi nella Valutazione del Rischio nell'impiego di nanomateriali rispetto a quelli normalmente valutati per le sostanze in forma macro, come la raccolta delle loro caratteristiche, l'analisi critica delle attività svolte e le possibili fasi durante le quali potrebbe avvenire una dispersione nell'ambiente
- Possono essere previste eventuali ulteriori misure preventive e protettive per il rischio residuo (supporto nella scelta del DPI, nella formazione/informazione per il corretto e adeguato impiego, controllo della loro efficacia, della loro gestione, ...)

Grazie per l'attenzione!

Per ulteriori informazioni in Federchimica:

- Dania Della Giovanna
 e-mail: <u>d.dellagiovanna@federchimica.it</u>
- Chiara Monaco
 e-mail: c.monaco@sviluppochimica.it