

Cost structures are becoming increasingly similar throughout the **road haulage sector**. The relative importance of the two main cost drivers (labour and fuel costs) has now reached comparable levels throughout the EU. [...] The variations of costs related to fuel range from 24% to 38% of total costs.

Pollutant	Concentration	Averaging period	Legal nature	Permitted exceedences each year
Fine particles (PM2.5)	25 μg/m³	1 year	Target value entered into force 1.1.2010 Limit value entered into force 1.1.2015	n/a
Sulphur dioxide (SO ₂)	350 μg/m³	1 hour	Limit value entered into force 1.1.2005	24
	125 μg/ m ³	24 hours	Limit value entered into force 1.1.2005	3
Nitrogen dioxide (NO ₂)	200 μg/ m ³	1 hour	Limit value entered into force 1.1.2010	18
	40 μg/ m³	1 year	Limit value entered into force 1.1.2010*	n/a
PM10	50 μg/m³	24 hours	Limit value entered into force 1.1.2005**	35
	40 μg/m ³	1 year	Limit value entered into force 1.1.2005**	n/a
Lead (Pb)	0.5 μg/m³	1 year	Limit value entered into force 1.1.2005 (or 1.1.2010 in the immediate vicinity of specific, notified industrial sources; a 1.0 µg/m ³ limit value applied from 1.1.2005 to 31.12.2009)	n/a
Carbon monoxide (CO)	10 mg/m ³	Max. daily 8 h mean	Limit value entered into force 1.1.2005	n/a
Benzene	5 μg/m³	1 year	Limit value entered into force 1.1.2010**	n/a
Ozone	120 μg/m³	Max. daily 8 hour mean	Target value entered into force 1.1.2010	25 days averaged over 3 years
Arsenic (As)	6 ng/m ³	1 year	Target value entered into force 31.12.2012	n/a
Cadmium (Cd)	5 ng/m ³	1 year	Target value entered into force 31.12.2012	n/a
Nickel (Ni)	20 ng/m ³	1 year	Target value entered into force 31.12.2012	n/a
Polycyclic Aromatic Hydrocarbons	1 ng/m ³ (expressed as concentr.ofBenzo(a)pyrene)	1 year	Target value entered into force 31.12.2012	n/a

Belt-driven generator Integrated starter- generator Parallel hybrid Power-split hybrid Second electric axle Serial hybrid (parallel option) Serial hybrid (range extended) Battery electric vehicle 1 <	Micro/mild	hvbrid	Full hybri	- PURE E	ILECTRIC L	PHEV	OSSIBLE -	EV	Fueld
************************************	Belt-driven starter- generator	Integrated starter- generator	Parallel hybrid	Power-split hybrid	Second electric axle	Serial hybrid (parallel option)	Serial hybrid (range extended)	Battery electric vehicle	Battery electric vehicle
Mixed operation, incl. long distance Urban/rural Urban/rural Urban Main applications Upper medium class/premium class, large SUVs, sports Mid-size cars, Mini & small Mid-size cars, Mini & small									
(vehicle segments) Cars, uansportersivans SUVs, light vans, mini delivery trucks, vans, fun cars sports cars	Main applic (vehicle segr	ations ments)	Mixed open Upper medium cars, transport	ration, incl. lon n class/premium cla ers/vans	ng distance ass, large SUVs, s	sports	Urban/rural Mid-size cars, MPVs, small SUVs, light delivery trucks, sports cars	Urban Mini & small cars, small vans, mini vans, fun cars	Urban Mini & sr cars, sm vans, mi vans, fui

Net	t substitution rate	
Years (ricambio a	uto al netto delle vendite)	
1994		
1995	3.72%	
1996	5 17%	
1997	6.98%	
1998	5.68%	
1999	5,31%	The average value of the
2000	5,87%	net substitution rate in the last te
2001	5,41%	
2002	5,48%	years is 3,98% , which brings to nearly
2003	4,88%	80% in 20 years.
2004	7,58%	
2005	4,54%	
2006	4,89%	
2007	5,98%	
2008	4,87%	
2009	5,24%	
2010	4,35%	
2011	3,78%	
2012	3,87%	
2013	3,83%	
2014	3,36%	
2015	3,52%	POLIT
2016	3,48%	DI TOR
2017	3.50%	

Bru	ino DALLA CHIARA, associate professor, ph.d. eng. (bruno.dallachiara@polito.it)
PO	LITECNICO DI TORINO vineering Denattment DIATI – Transport Systems
cor	so Duca degli Abruzzi, 24
101	129 Torino - Italy – EU
	References
	Dalla Chiara B. (a cura di), Trasporto merci e logistica esterna, maggio 2019, EGAF, ISBN 978-88-8482-946-7, pagg. 1-175
	Dalla Chiara B., "Considerations on the demand and use of energy in the transport systems / Considerazioni sulla domanda ed impiego di energia nei sistemi di trasporto", Ingegneria Ferroviaria, vol. LXV, ISSN: 0020-0956. N. 7-8, July-August 2010
	Dalla Chiara B., Pellicelli M., Sustainable road transport from the energy and modern society points of view: Perspectives for the automotive industry and production, Journal of Cleaner Production, http://dx.doi.org/10.1016/j.jclepro.2016.06.015 , 2016
	Dalla Chiara B., Pede G, (a cura di) Valentini M.P., Coviello N., Deflorio F., Trasporti terrestri ed energia - Tecnologie, metodi ed applicazioni, Autori Coviello N., Dalla Chiara B., Deflorio F.P., Pede G., Valentini M.P.286 pp, EGAF, ISBN 978-88-8482-776-0
	Dalla Chiara B., Deflorio F., Eid M., Analysis of real driving data to explore travelling needs in relation to hybrid–electric vehicle solutions, Transport Policy, Available online 26 April 2018, ISSN 0967-070X, https://doi.org/10.1016/j.tranpol.2018.04.009
	Gerboni R., Grosso D., Carpignano A., Dalla Chiara B. (2017), Linking energy and transport models to support policy making, Energy Policy, Volume 111, December 2017, Pages 336–345, https://doi.org/10.1016/j.enpol.2017.09.045
	POLITECNIC